
© 2015-16 Alexander Powell / Epistemic Systems Consulting
All rights reserved

CheckMate Quick Guide

Introduction

CheckMate is a versatile and easy-to-use Windows application for determining whether an XML or

XHTML document conforms to a set of structural rules, even when you don’t have a DTD or schema.

The rules are written in the CheckMate Scripting Language (CSL). You can choose whether element

and attribute names are validated against lists of allowed names. Without name validation CheckMate

can be highly permissive when compared with grammar-based approaches to structure validation,

and there are situations when this can be a very useful characteristic. Equally CheckMate may be used

to enforce an extremely stringent validation regime.

CheckMate has a graphical user interface that makes it easy to locate any structural errors detected,

and error reports can be exported in an XML format. Typically CheckMate is used in conjunction with

an XML editing tool such as Notepad++.

Setup and configuration

To install CheckMate, you need to copy the CheckMate application (CheckMate*.exe) and the

CheckMate .ini file (checkmate.ini) to somewhere on your computer. The two files should be copied

to the same folder. You may find it convenient to create a shortcut to the application and copy it to

the Windows desktop.

The CheckMate .ini file tells CheckMate where to look for your XML files and CheckMate rules files,

and which allowed elements and allowed attributes lists are to be used. It is also used to store various

application settings.

A typical CheckMate .ini file looks something like this:

[Locations]

XMLFiles=C:\CheckMateTest\resources\XML files

Scripts=C:\CheckMateTest\resources\scripts

[Settings]

AllowedElements=C:\CheckMateTest\resources\scripts\elements.cml

AllowedAttributes=C:\CheckMateTest\resources\scripts\attribs.cml

 ⁝

The .ini file is a text file which you can edit using a text editor such as Windows Notepad in order to

specify your own application configuration preferences. It is a good idea to create a backup copy of

the file before modifying it.

(Note: You can change the XML file and script locations from within the application, via File | XML file

location… and File | Script file location… .)

2

Draft 1.1r4 © 2015-16 Alexander Powell / Epistemic Systems Consulting. All rights reserved 10/2016

CheckMate scripts

A CheckMate script is a list of structural rules. Each rule represents a check that CheckMate will carry

out on your XML document. Rules are processed sequentially. (The free version of CheckMate has a

50-rule limit. Scripts containing more than 50 rules will be loaded, but only the first 50 rules will be

applied.)

Most CheckMate rules take the form ‘X {predicate} Y’, where X and Y are XML ‘element objects’ and

{predicate} stands for one of a number of terms in the CheckMate Rule Scripting Language (CSL). For

example, a script might include the rule:

* 1.2: <html> HAS_CHILD <head>

This means that the <html> element should always have <head> as a child element, while the rule

* 1.3: <html> HAS_ATTRIB @lang

means that the <html> element should always have a ‘lang’ attribute. Predicate terms are written in

uppercase text, and underscore characters are used in place of spaces. A rule is said to be passed when

its conditions are fulfilled by all the element objects to which it applies. If any such target element

object does not meet the rule then the rule is said to fail.

CheckMate is designed to make it easy to define document structures in terms of element/attribute

combinations. The term ‘element object’ is used here to refer to either an element name or an

element name in conjunction with an attribute name or name/value pair.

In CheckMate scripts, element objects are written in angle brackets, with any qualifying attribute

being given after an ‘@’ symbol. For example, ‘<p>’ refers to all p elements, irrespective of the

attributes that might be applied to them. ‘<p@class(‘biblio’)>’ means p elements that have a class

attribute with the value ‘biblio’. (In an XML document, the opening tag for such an element would be

<p class=”biblio”>.)

Some expressions involve lists of element objects. These are defined by placing the element objects

within a set of square brackets or curly braces, depending on the list type, with commas or vertical

bars used to separate the individual element objects. (See examples below.)

(Note: If an attribute value is specified then it must be placed within single quotation marks, in

parentheses following the attribute name.)

The full list of CSL expressions currently defined is:

CSL expression pattern Meaning & example(s)

ROOT_IS X

Checks whether X is the root element object of the document
Example:
ROOT_IS <html>

EXISTS X [IN Y]

Checks whether the element object X occurs in the document

Examples:

EXISTS <section@class('book-meta')>

EXISTS <p@class(‘title’)> IN <section@class(‘chapter’)>

3

Draft 1.1r4 © 2015-16 Alexander Powell / Epistemic Systems Consulting. All rights reserved 10/2016

X [IN Y] HAS_PARENT Z

Checks whether element object X has element object Z as its
parent

Examples:

<p@class('chap-title')> HAS_PARENT <section@class('chap-
meta')>

X [IN Y] HAS_CHILD Z

Checks whether element object X has element object Z as one of
its children

Example:

<head> HAS_CHILD <link>

X [IN Y] HAS_SIBLING Z Checks whether element object X has element object Z as a sibling

Example:

<meta@name(‘dc.title’)> HAS_SIBLING
<meta@name(‘dc.creator’)>

X [IN Y] DESCENDS_FROM Z

Checks whether element object X is a descendant of element
object Z, i.e. Z must be the parent or grandparent or great-
grandparent (…) of X

Example:

<body> DESCENDS_FROM <html>

X [IN Y] CONTAINS Z

Checks whether element object Z descends from element object X

Example:

<div@class('copyright-container')> CONTAINS
<span@class('copyright-holder')>

X [IN Y] HAS_ATTRIB @z

Checks whether element object X has attribute @z

Examples:

<html> HAS_ATTRIB @lang

<html> HAS_ATTRIB @xmlns('http://www.w3.org/1999/xhtml')

X [IN Y] HAS_ALL_CHILDREN_IN <list>

Checks whether element object X’s children include all the
element objects in the specified list

Example:

<article@class('book')> HAS_ALL_CHILDREN_IN
[<section@class('book-meta')>, <section@class('book-front')>,
<section@class('book-body')>, <section@class('book-back')>]

X [IN Y] HAS_CHILDREN_ONLY_FROM
<list>

Checks whether all of element object X’s children are drawn from
the specified list

Examples:

<body> HAS_CHILDREN_ONLY_FROM [<article@class('book')>]

<section@class('book-meta')> HAS_CHILDREN_ONLY_FROM
[<section@class('book-series-info-sec')>, <section@class('book-
title-page')>, <section@class('book-pub-rights')>]

X [IN Y] IS_FOLLOWED_BY Z

Checks whether element object X has element object Z as its
immediate successor sibling

Example:

4

Draft 1.1r4 © 2015-16 Alexander Powell / Epistemic Systems Consulting. All rights reserved 10/2016

<div@class('copyright-container')> IS_FOLLOWED_BY
<div@class('publisher-container')>

COUNT X [IN Y] <num-op> <number>

COUNT A [IN B] <num-op> COUNT C
[IN D]

Checks whether the number of times element object X occurs in
the document stands in the specified numerical relation to the
specified number

Checks whether the number of times element object A occurs in
the document stands in the specified numerical relation to the
number of times element object C occurs in the document

Examples:

COUNT <title> IN <head> EQ 1

COUNT <cite> GTE COUNT <ref>

@x [ON Y [IN Z]] HAS_VALUE_MATCH
@a [ON B [IN C]]

Checks whether attribute @x has the same value as attribute @a

Examples:

@rid HAS_VALUE_MATCH @id

@rid ON <cite> IN <body> HAS_VALUE_MATCH @id ON <ref> IN
<back>

@x [ON Y [IN Z]] MATCHES %<regex>% Checks whether the value of attribute x is a match with the
regular expression specified on the RHS between the % symbols

Example:

@id ON <p> MATCHES %^p-[0-9]+$%

Context

More specific contextual constraints can be expressed by qualifying the left hand side of many

predicate expressions using the 'IN' qualifier. To say that an element/attribute combination B occurs

'in' a particular element/attribute combination A means that B is a descendant of A. So for example if

we say

<meta> IN <head> HAS_CHILD <link>

then we mean that when a <meta> element occurs in the context of a <head> element it should have

a <link> element as a child.

Alternatives

Alternatives may be specified, using curly braces and vertical bar(s), for predicates that take a single

value rather than a list on the right hand side. (Those predicates are HAS_CHILD, HAS_PARENT,

CONTAINS, DESCENDS_FROM, IS_FOLLOWED_BY, HAS_ATTRIB.) For example:

 <ref> IS_FOLLOWED_BY { <ref> | <ref-head> }

means that a <ref> element must have as its immediate successor element (at the same level, i.e. as

a sibling rather than a child) either another <ref> or a <ref-head> element.

The null element, <~>

If you want to say that an element may be empty, i.e. need not have any child element, or you wish

to stipulate that an element may be followed by one of a number of elements or by no element at all,

then the null element, represented as <~>, is used. The null element is short-hand for ‘no element’.

5

Draft 1.1r4 © 2015-16 Alexander Powell / Epistemic Systems Consulting. All rights reserved 10/2016

For example, if you wish to say that a paragraph must be followed by another paragraph, a heading,

or by nothing at all, then this can be accomplished by a rule like this:

 <p> IS_FOLLOWED_BY { <p> | <head> | <~> }

(Note: The null element may be used only with the HAS_CHILD, HAS_CHILDREN_ONLY_FROM and

IS_FOLLOWED_BY predicates.)

Numerical operators

The following numerical operators are defined for use where relevant (at present only in conjunction

with COUNT):

EQ : equal to

GT : greater than

LT : less than

GTE : greater than or equal to

LTE : less than or equal to

NE : not equal to

Overall script structure

CheckMate scripts are plain text files, and should conform to a number of rules:

 They should have the file extension ‘.cms’, and should be saved to the scripts folder specified

in the CheckMate .ini file (see above).

 Each script rule should be placed on a new line, and the line should begin with an asterisk

character (*).

 There should then be a space, followed by a numerical string (a combination of digits and the

period character, e.g. ‘1.5.2’) to identify the rule.

 The identifier is followed by a colon and a space. After that comes the rule itself.

 Rules should not contain any line breaks.

Example:

* 1.1.2: @class ON <div> IN <section@class('book-toc')> MATCHES %^toc-[a-z]+$%

CheckMate treats lines beginning with a hash character as comments, and they are ignored.

Comments may be used to create headings, which can be useful for grouping your rules into different

categories.

Rules are placed within a defined section of the script file, the start of which is indicated by a line

bearing the text ‘%RULES_START’ and the end of which is indicated by ‘%RULES_END’.

(Note: CheckMate validates rules when they are loaded, and some additional validation may take

place when a rule is applied to content. The application will report any errors it detects, and in general

it is a good idea to correct any incorrect rules before attempting to apply a rules script to your content.)

Running CheckMate

To launch CheckMate, navigate to the folder into which you copied the file CheckMate*.exe and

double click on it, or click on the desktop shortcut if you created one. You will see the main CheckMate

window:

6

Draft 1.1r4 © 2015-16 Alexander Powell / Epistemic Systems Consulting. All rights reserved 10/2016

Checking the structure of an XML or XHTML document using CheckMate consists of four main steps:

(1) Load the document via the Load XML button. The document will be visible in the right hand

pane and the filename will be displayed in the upper text box:

(2) Load the CheckMate script against which you wish to validate the XML document’s structure,

via the Load CM script button. The script name will be displayed in the lower text box in the

upper panel. If any of the rules are found to contain errors, this is reported by the application.

The numbers of any incorrect rules, if there are any, are listed in the rule error box within the

lower information panel. Once all rules have been loaded the number of rules read is also

stated in the information panel.

(3) Parse your XML file. This process creates indexes of all the elements and attributes in the

document, and it is these indexes that the software examines when it carries out the checks

defined in your script. Use the Parse/index XML button to initiate parsing. If the parser detects

7

Draft 1.1r4 © 2015-16 Alexander Powell / Epistemic Systems Consulting. All rights reserved 10/2016

errors in the basic structure of your XML file, e.g. mis-matched open and close tags, incorrect

element nesting, etc, then you should correct the errors and re-parse the file until no errors

are reported.

Optionally you may choose to have the parser validate the names of the elements and

attributes in your file, by checking the Check element names and/or Check attribute names check

boxes in the upper panel. Suitable lists of allowed element and attribute names must be

defined and available to the application. These lists are text files that end with the extension

‘.cml’. (See sample files provided with the application.) To load an allowed element and/or

attribute file select File | Load allowed elements files or File | Load allowed attributes file as

appropriate. Once a file has been successfully loaded you can select View | Allowed elements or

View | Allowed attributes to inspect the list. (Note: you must use an external text editor to modify

the contents of an allowed list.)

(4) Click on Run script checks. Checking is generally very quick, although the time taken will

depend on the number of rules, the length of the document being checked, and various other

factors.1 While checks are carried out the number of the rule currently being applied is shown

in the lower information panel. Once all rules have been applied a checking report is displayed

in the left hand pane:

The checking report shown in the application lists the rules and provides feedback on whether

the document conformed to them. Links to erroneous structural elements are given, and

clicking on them will highlight the corresponding place in the document:

1 Some regex expressions may take some time to be evaluated.

8

Draft 1.1r4 © 2015-16 Alexander Powell / Epistemic Systems Consulting. All rights reserved 10/2016

The error report may be saved as a well-formed XML file which provides a basis for automatic

creation (e.g. via XSLT) of an HTML file containing embedded error messages. To save the

report select File | Save error report.

If you modify the XML document in another application (e.g. Notepad++) and wish to check it

again, you can do so by loading the document again via the Load XML button or by simply

clicking the reload button next to the upper text box. You must parse the document once more,

since by editing it you will have made structural changes to the document that make the

generated indexes obsolete. Then, assuming that you have already loaded a script, you can

just click on the Run script checks button to re-check the document.

That covers the basics of using CheckMate. Additional functionality is accessible via the menu items,

and it is worth exploring those. Further exciting features are planned for future versions of the

software.

Your feedback matters!

Please send any comments or suggestions to

epistemicsystems@gmail.com.

mailto:epistemicsystems@gmail.com

